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Estimation Kalman filter

Kalman filter

Addresses general problem of estimating the state x ∈ Rn of a discrete
time controlled process governed by a linear stochastic differential
equation:

xk = Axk−1 + Buk−1 + wk−1

zk = Hxk + vk

z ∈ Rm is a vector of measurements

u ∈ Rl is control input vector

A is (n x n) system matrix

B is (n x l) input matrix

H is (m x n) measurement matrix

wk , p(w) ∼ N(0,Q) is process noise

vk , p(v) ∼ N(0,R) is measurement noise.
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Estimation Kalman filter

Under the assumption of precisely known linear system (matrices A, H, Q
and R are exactly known) and pure white, zero mean, uncorrelated noise
sequences w and v , Kalman filter will provide optimal state estimation.
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Estimation Extended Kalman filter

Extended Kalman filter

The process is now governed by the nonlinear stochastic difference
equation

xk = f (xk−1, uk−1,wk−1),

zk = h(xk , vk)

Idea: nonlinear functions can be linearized around the mean and
covariance of the current system state estimate.
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Estimation Extended Kalman filter

Linearization:

xk ≈ x̃k + A(xk−1 − x̂k−1) + Wwk−1,

zk ≈ z̃k + H(xk−1 − x̂k−1) + Vvk ,

where:

A[i ,j] =
∂f[i ]
∂x[j]

(x̂k−1, uk−1, 0),

W[i ,j] =
∂f[i ]
∂w[j]

(x̂k−1, uk−1, 0),

H[i ,j] =
∂h[i ]

∂x[j]
(x̂k , 0),

V[i ,j] =
∂h[i ]

∂v[j]
(x̂k , 0).

Prediction error and the measurement residual can be defined as:

ẽxk ≡ xk − x̃k ≈ A(xk−1 − x̂k−1) + εk ,

ẽzk ≡ zk − z̃k ≈ Hẽxk + ηk ,

where:

p(ε) ∼ N(0,WQW T ), p(η) ∼ N(0,VRV T ).
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Estimation Extended Kalman filter

Operation of the Extended Kalman filter can be presented as:

Optimality for the EKF is not guaranteed. First order linearization of the
nonlinear system can introduce large error in the true posterior mean and
covariance of the transformed GRV.
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Estimation Unscented Kalman filter

Unscented Kalman filter

Addresses the approximation issues of the EKF and in general yields better
results

The state distribution is again represented by a GRV specified using a
minimal set of carefully chosen sample points. These sample points
completely capture the true mean and covariance of the GRV.

When propagated through the true nonlinear system, the posterior
mean and covariance is captured accurately.

This process is defined by unscented transformation.
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Estimation Unscented Kalman filter

Unscented transformation

Suppose a (nx1) vector x has the known mean x̄ and covariance P.
2n sigma point vectors x (i) are formed as:

x (i) = x̄ + x̃ (i), i = 1, ..., 2n

x̃ (i) =
(√

nP
)T
i
, i = 1, ..., n

x̃ (n+i) = −
(√

nP
)T
i
, i = 1, ..., n

where
√
nP is the matrix square root of nP such that

(√
nP
)T √

nP = nP

and
(√

nP
)
i

is the i-th row of
√
nP. Ensemble mean and covariance of

the set of sigma point vectors are equal to x̂ and P.
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Estimation Unscented Kalman filter

To approximate the mean and covariance of a nonlinear function y = h(x):

individual sigma points are transformed:

y (i) = h(x (i)), i = 1, ..., 2n

weighted sum of the transformed sigma points is calculated:

ȳu =
1

2n

2n∑
i=1

(y (i)), i = 1, ..., 2n

Pu =
1

2n

2n∑
i=1

(y (i) − yu)(y (i) − yu)T
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Estimation Unscented Kalman filter

UKF algorithm

Time update:
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Estimation Unscented Kalman filter

UKF algorithm

Measurement update:
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Estimation Least squares

Least squares

Unknown parameter of a mathematical model should be chosen such that
the sum of the squares of the differences between the actually observed
and the computed values, multiplied by numbers that measure the degree
of precision, is a minimum.

y = Hx + v

y ∈ Rk is a vector of measurements corrupted by noise v

x ∈ Rn is a unknown vector to be estimated

H is (k x n) measurement matrix.
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Estimation Least squares

Measurement residual and cost function for estimated value of x denoted
x̂ are:

εy = y − Hx̂

J = ε2
y1 + ...+ ε2

yk = εTy εy = (y − Hx̂)T (y − Hx̂) .

To minimize J with respect to x̂ , ∂J
∂x̂ is calculated and set equal to zero,

which yields:

x̂ = (HTH)−1HT y

x̂ = HLy .

HL is the left pseudo inverse of H, which exists if k > n and H is full rank.
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Estimation Least squares

Weighted least squares

Incorporates the variance of the measurement noise as the measure of
uncertainty:

E (v2
i ) = σ2

i (i = 1, ..., k)

R = E (vvT ) =

σ
2
1 . . . 0
...

...
0 . . . σ2

k

 .
New cost function and estimated value of x are:

J = ε2
y1/σ

2
1 + ...+ ε2

yk/σ
2
k

= εTy R
−1εy

= (y − Hx̂)T R−1 (y − Hx̂)

x̂ =
(
HTR−1H

)−1
HTR−1y
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Estimation Least squares

Recursive least squares

In most of the applications we obtain measurements sequentially and want
to update estimate of x after every measurement:

yk = Hkx + vk

x̂k = x̂k−1 + Kk (yk − Hk x̂k−1) ,

where Kk is the estimator gain matrix to be determined. The estimation
error mean and covariance can be computed as:

E (εx ,k) = E (x − x̂k) = (I − KkHk)E (εx ,k−1)− KkE (vk)

Pk = (I − KkHk)Pk−1(I − KkHk)T + KkRkK
T
k
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Estimation Least squares

Optimality criterion for the calculation of Kk is to minimize the sum of
variances of the estimation error at time k , defined by the cost function Jk :

Jk = E [(x1 − x̂1)2] + ...+ E [(xn − x̂n)2]

= E (ε2
x1,k + ...+ ε2

xn,k).

When partial derivative with respect Kk is calculated and set equal to
zero, expression for Kk is obtained:

Kk = Pk−1H
T
k (HkPk−1H

T
k + Rk)−1.

Vicko Prkačin (UNIDU) State and parameter estimation February 18, 2019 17 / 31



Aerial load manipulation

Aerial load manipulation

To be able to understand and implement described estimation techniques
in the context of aerial load manipulation, one must be familiar with the
system kinematics and dynamics. Quadcopters are one of the most
common used UAVs for this application.
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Aerial load manipulation

System description

Two coordinate frames are defined:

{A} aircraft-fixed reference frame

{G} ground-fixed frame, considered to be the inertial frame.

The variables are:

η1 =
[
x y z

]T
- position of the origin of {A} measured in {G},

η2 =
[
φ θ ψ

]T
- roll, pitch and yaw angles that describe the

orientation of {A} with respect to {G},
ν1 =

[
u v w

]T
- linear velocity of {A} relative to {G}, expressed

in {A},
ν2 =

[
p q r

]T
- angular velocity of {A} relative to {G}, expressed

in {A}.
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Aerial load manipulation Dynamics

Dynamics

UAV’s 6 degree of freedom nonlinear dynamics equation is expressed as:

M ν̇ + C (ν)ν + Dν + G (η) = τ + τL

η =
[
η1 η2

]T
is the vector of position and orientation

ν =
[
ν1 ν2

]T
is the vector of linear and angular velocities

M is the mass and inertia matrix of the UAV

C (ν) is the matrix of Coriolis and centripetal terms

Dν represents dissipative force and torque vector, where D is the
damping matrix.

G (ν) is the vector of gravitational forces and moments
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Aerial load manipulation Dynamics

Control inputs are given as:

fτ =G
A R−1 (η2)

 0
0
U1

 , τ(η2,U) =


fτ (η2)
U2

U3

U4


where U1, U2, U3, U4 are control forces generated by rotors.

Forces and torques that the load exerts on the UAV are:

τL =
[
FH TH

]
.
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Aerial load manipulation Kinematics

Kinematics

System kinematics is given as:[
η̇1

η̇2

]
=

[
G
AR(ν2) 0

0 Q(ν2)

] [
ν1

ν2

]
,

η̇ = JR(η)ν

where:
G
AR(η2) is the transformation matrix between the two reference frames

Q(η2) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

 .
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Aerial load manipulation Slung load model

Slung load model

The external slung load is modelled as a point mass pendulum suspended
from a single point.

{H} is defined at the suspension point with unit vectors parallel to
{A} and position with respect to UAV CoG given by

ρH =
[
xH yH zH

]T
Position vector ρL of the load with respect to the suspension point is:

ρL = RYH
(θL)RXH

(φL)

0
0
lL


Position of the load, as described here represents the state, and the length
of the cable (lL) is parameter for estimation in the focus of our research.
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Aerial load manipulation Slung load model

The force FH that the load exerts on the vehicle and the torque TH are
respectively given by:

FH = −mLGL,

TH = ρH × FH

where:

GL = RXA
(φ)−1RYA

(θ)−1

 0
0

−mLg


represents the vector of gravitational forces and moments, φ and θ are the
roll and pitch angles of the UAV respectively, and mL is the mass of the
load.
Both FH and TH are functions of φL and θL, as well as of UAV states.
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Current work

Current objective:

Online state estimation of the slung load without introduction of the
additional sensors.

Model-free on-line state estimation of the slung load utilizing only
standard sensors available on the UAV using the signal processing of
the sensor data.
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Current work Continuous wavelet transform

Continuous wavelet transform

Wavelet is a function with a zero average, normalized ||ψ|| = 1, and
centred in the neighbourhood of t = 0:∫ +∞

−∞
ψ(t)dt = 0

The continuous wavelet transform (CWT) of a signal x(t) ∈ L2(R) is a
sequence of projections onto rescaled and translated versions of the
wavelet ψ(t):

W (t, s) =

∫ +∞

−∞

1

s
ψ∗
(
u − t

s

)
x(u)du

where (*) symbol denotes the complex conjugate, scaling factor is denoted
by s, and translating factor is denoted by u.
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Current work Continuous wavelet transform

CWT is a 2D representation of a 1D signal. For a real valued function the
result of a transform is an (NaxN) matrix, where Na is the number of
scales and N is the number of samples. If the wavelet is complex-valued,
the coefficients are complex-valued.

Morlet Wavelet - complex-valued wavelet, esssentially a Gaussian
envelope modulated by a complex-valued carrier wave at radian frequency
ν:

ψν(t) = aνe
−(1/2)t2

[
e iνt − e−(1/2)ν2

]
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Current work Experimental platform

Experimental platform

Crazyflie 2.0 quadcopter
Loco UWB positioning system
Crazyradio radio link

Vicko Prkačin (UNIDU) State and parameter estimation February 18, 2019 28 / 31



Current work Results

Results

Position:
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Current work Results

Disturbance reconstruction:
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Current work Results

The End
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